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Abstract. This work proposes the use of wavelets in modal parameters identification
of vibratory systems. The developed metodology uses optimization techniques as a
“Matching Pursuit” algorithm modification. Signals obtained from simulation of a
vibratory system with artificially added noise and from experimental tests are used to
evaluate the method robustness, accuracy and reliability. The method performance is
compared to the Ruzzene's method.
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1. INTRODUCTION

The parameters of non stationary signals can only be computed in function of time,
resulting in instantaneous values. (Bendat and Pierson, 1986)

The Short Time Fourier Transform, Wigner-Ville distribution and the Wavelets
Transform are useful techniques to detect patterns in signals, even on non stationary
signals.

The wavelet transform has been used for analysis of non stationary signals because
this is a linear and invertible transform that uses a vectorial basis, generated from
functions that have both time and frequency fixed localization. Mallat and Zhang (1993)
proposed an algorithm denoted “Matching Pursuit” capable to detect wave patterns in
the signals representing it through wavelets.

This work propose a methodology for the identification of mechanical systems
modal parameters of mechanical systems through wavelets, using a modification of an
algorithm developed by Mallat and Zhang (1993), including optimization techniques
to determine the wavelets of a family that are present in the time response signal.

The proposed method is compared with the one of Ruzzene et al (1997), which
detects the envelope through wavelet transform. His method is a similar procedure that
detects signal envelopes using the Hilbert transform.



To evaluate the robustness and the accuracy of the proposed method, signals
generated in the simulation of a three degree of freedom vibratory systems and as well
as signals obtained from experimental apparatus are used.

2. WAVELETS : MATHEMATICAL BACKGROUND

Wavelets are functions obtained by translation and dilation of a function called
mother wavelet. The dilation defines the mother wavelet central value position in the
frequency domain and the translation define the central value in time domain. Both
operation are realized by two parameters a and b in the following equation :
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The translation and dilation occur if the function ¥ has the following properties:
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The above conditions are sufficient for existence of both central values in the
frequency and time domains.

The function that define the mother wavelet should have finite norm and zero mean,
as shown in “Eq.(3)” :
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These restrictions are sufficient for the existence of the wavelet transform, once it
is defined as the scalar product of the wavelet with signal f(?) as follows:
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The inverse transform is given by:
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To guarantee mother wavelet’s oscillatory characteristic, with capacity to detect
the variations in the signals shape, Kovacevic & Cohen (1996) propose the following
mathematical cancellations set:
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These conditions are sufficient for the existence of wavelet transform. However,
for the division of a signal in a wavelet series it is necessary the use of frames and a
linear operator. Vectorial spaces generated by a wavelet’s family must be orthogonal
and orthonormal. (Kovacevic & Cohen, 1996)

These restrictions intend to guarantee the representation of a discrete signal by a
finite group of sequences, as the defined in “Eq.(7)”. The first term is the scalar product
of two vectors, as defined by “Eq.(4)”.
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If these orthogonality and orthonormality conditions are satisfied, the signal f can
be represented by the following summation :

f= z <f ’wa,b>¢,a,b (8)

Kovacevic & Cohen (1996) proposed that the orthogonality condition is obtained
when a symmetrical and orthonormal window is multiplied by orthogonal functions.
This is always fulfilled by using trigonometric functions.

This condition is necessary when the subsets formed by vectorial spaces possess a
non null intersection. Therefore, when these intersection are null the subsets are always
orthogonal. The subsets orthogonality guarantees that total set can be formed by direct
summation.

3. MODIFIED “MATCHING PURSUIT” ALGORITHM
Mallat & Zhang (1993) proposed an algorithm to identify the components of a
discrete signal that has high correlation coefficients, with the vectors Y that are members

of a set called dictionary, as defined in the “Eq.(9)”, where /7 is the set of wavelets
parameter.
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By definition this dictionary is said complete only if it is a Hilbert space. Thus, the
representation of a signal belonging to the vectorial Hilbert space (H) is done through
successive approaches as follows:

f=(fy, 0, +R, (10)

The term R is called orthogonal residue of f'in relation to ¥ . This statement is
true since the following relationship is verified :
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The approximation of f will be better when the norm of the residue is minimum. To
minimize this residue we can find the wavelet from the dictionary that maximize the
factor k£, normalized between zero and the unity.
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This factor assume the unitary value only if a dictionary’s component is capable to
represent the signal in its totality. The maximum value of k£ decreases when the
relationship of the RMS level of some strange patterns to the dictionary and the
dictionari’s patterns is increased.

Once the residue is determined in the first interaction, defined in “Eq.(10)”, the
algorithm continues by substituting the initial vector by the residue. The interactions
series in “Eq.(13)” can be written, where it should be noticed that for n=0, Rf" is the
original vector f.

R"=(R", ¢, +R"™ n=0..m (13)

Consequently the signal can be reconstructed by the following summation:
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The convergence of the algorithm is demonstrated by Mallat & Zhang (1993) using
the signal energy conservation method or applying the concept of orthogonality.

This algorithm was developed initially for dictionaries formed only by wavelets
with two dimensional resolutions. In this case the wavelets parameters are obtained
through the solution of a linear equations set.

In this work the “Simulated Annealing” and conventional optimization techniques
are combined to modify the Mallat’s algorithm. This procedures is used to identify the
wavelet of a dictionary that maximize the factor k.

The optimization techniques must be used because the number of wavelets
parameters is greater than two. This metodology leads to a significant reduction in the
number of wavelets parameters combinations to achieve the final solution.

The algorithm convergence rate decrease exponentially, and its decay depends on
the residue and dictionary elements correlation level. (Mallat and Zhang, 1993)

For signals components which have high levels RMS compared to background noise,
the norm residue decay rate will be high.

When all signals patterns are identified, the residue will not have correlation with
the dictionary. It behaves as in the analysis of a white noise.

When the residue correlation level approaches the white noise correlation level
with the same dictionary, the algorithm may be stopped. This condition is expressed by
“Eq.(15)”, where the term k(R ) represents the white noise residue correlation level.

k(R,")> E(k(R,)) for 0<nsm (15)



4. APPLICATION IN MODAL ANALYSIS

In order to apply the proposed method to modal parameter identification it is
necessary define a wavelet capable to generate a dictionary correlated with the patterns
found in the Impulse Response Function of a mechanical systems.

Freudinger et al (1998) used the Laplace’s Wavelet to characterize some aircraft
modal parameters in a real time during flight. This wavelet is not orthonormal, leading
to inadequate results.

The impulse response function of a multi-degree of freedom vibratory systems
expressed in modal coordinates in “Eq.(16)”, is used to build the wavelet dictionary.
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The mother wavelet is presented in “Eq.(17)”, where the denominator is the wavelet
norm.
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For this application, the wavelet translation in time domain does not have to be
performed by the algorithm, since all IRF components start at the time origin and
decrease exponentially as function of the modal parameters.

Substituting this wavelet in the “Eq(13)” it can be verified that the inner product
value is the product of the initial conditions by the eigenvectors and that ¢ is the
eigenvectors phase angle.

The algorithm defined by “Eq.(13)” will identify the modal parameters, choosing
the higher correlated wavelets that are contained in the dictionary.

5. SIMULATED AND EXPERIMENTAL RESULTS

The mechanical system model that represents the apparatus used in experimental
tests is shown in “Fig.1”. The model values of mass, stiffness and damping are
respectively M,=3.5 Kg, M,=2 Kg, M,=1.5 Kg, K,=5 10° N/m, K,=2 10° N/m, K =1 10°
N/m, C,=100 N/(m/s).

The time responses used in all simulation tests have 2048 data points, spaced by
39 ms, resulting a frequency resolution equal to 0.125 Hz.

The robustness and precision of the proposed method are verified by the analysis
of the IRF obtained from theoretical model adding several noise levels to the simulated
response. The results obtained are shown in “Table 1” and in “Fig.2”. The behavior of
correlation indexes, that determines the stop condition for the algorithm is presented
in “Fig.3”.
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Figure 1- Theoretical model and experimental apparatus schematic diagram.

The inclusion of optimization techniques in the algorithm permits to obtain
parameters values that are very close to their global optimum value. This guarantees
the method robustness in the presence of up to 20 % noise levels, allowing a good
signal representation, as presented in “Fig.2”.

Table 1- Theoretical model: Values of the real and identified modal parameters.

| dentified Values
Modes Noise Level I:Ers; rrthqe:; Difference DarEr?)iir;EII:e;:tor Difference
Mode 1 Nul 27.0287 015% 0.0046 2.12%
Natural Frequency [Hz] 1% 27.0295 0.16% 0.0045 4.25%
26.9858 5% 27.0270 0.15% 0.0046 2.12%
Darnping Factor 10% 27.0265 0.15% 0.0044 6.81%
0.0047 20% 27.0311 0.16% 0.0047 zero
Mode 2 Null 56.8451 0.17% 0.0167 15.27%
Natural Frequency [Hz] 1% 56.8345 0.15% 0.0145 0.69%
567477 5% 568320 | 0.15% 00143 0.69%
Darrping Factor 10% 56.8459 0.17% 0.0142 1.38%
. 20% 56.8485 0.17% 0.0166 13%
Mode 3 Nul 81.3843 0.17% 0.0166 1.83%
Natural Frequency [Hz] 1% 81.3627 0.02% 0.0200 18%
812424 5% 81.3461 0.13% 0.0199 17.59%
Danping Factor 10% 81.3759 0.16% 0.0186 11.827%
001 20% 81.3449 0.12% 0.0165 0.6%

In “Table 17 it is noticed that all vibration modes estimated frequencies presented
differences lower than 0.17% of the correct values. However, the estimated damping
factors have differences up 18%, because the objective function is ill conditioned to
this design variable, independently of the added noise level.

The random behavior of the damping factor differences may be explained by the
randon nature of the “Simulated Annealing” optimization method, which always gives
values close to the global optimum.
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Figure 2- Effect of 20% noise level added to the simulated Impulse Response.
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Figure 3- Noise level effect on the behavior of the Correlation coefficients (k) as



As can be seem in “Fig. 37, the correlation level k decreases rapidly when the
modal components are extracted from the residue, even for high added noise levels. It
is noticed that the algorithm stop criterion is achieved around 70 interactions,
independently on the presence of background noise, where the k&(R.") curves crosses
the white noise correlation coefficient mean value curve

To evaluate the algorithm capacity to identify the mechanical modal parameters
for systems with high modal density, the values for mass, stiffness and damping of
model were altered to: M,=3.3 Kg, M,=2.223 Kg, M,=0.929 Kg, K,=9.6052 10° N/m,
K,=5.3982 10" N/m, K,=1.9706 10° N/m, C,=200 N/(m/s), resulting a difference of
0.2474 Hz between the second and the third natural frequencies, which corresponds to
two resolution lines separation in frequency domain.
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Figure 4- Impulse response for a mechanical system with high modal density.

The estimated modal parameters are presented in “Table 2.”. It can be noticed that
the frequency differences are lower than 0.22%.

The wavelets that correlates to the second and third modes are very similar. After
the first wavelet extraction, a small error in its parameters causes a high error in the
next wavelet identification. These amplitude error of the wavelets leads to a significant
error in the modal damping factor estimation. It should be noticed that this is a critical
case for modal analysis, independently of the applied method.

The correct and estimated spectra difference in “Fig.4” is high only at frequencies
close to the second and third modes.

The experimental tests were conducted on the vibratory system shown in “Fig.1”.
The impulsive excitation is applied at mass 1 by a B&K impact hammer equipped with
a piezoelectric force transducer. The response is measured by a B&K accelerometer
installed at mass 1. The time signals are digitalized by a Spectral Dynamics analyzer
with 2048 point and 1.95 ms time resolution.



The synchronized time average of 10 samples, stored on analyzer internal memory,
is transfered to a microcomputer. The force signal is used to trigger the acquisition
and to synchronize the time average process.

The estimated modal parameters of the experimental vibratory system are presented
in “Table 3. These results were obtained by the algorithm, and represent the mean and
variance of 20 experiments. The statistical confidence is assured by very low values of
the variances.

Table 2. Real values and obtained for a mechanical systems with high modal density.

| dentified Values
Modes Estimated . Edtimeted :
Difference . Difference
Frequency Damping Factor
Mode 1
Natural Freq : 20 [H2] 20.0320 0.16% 0.0006 zero
Danping Factor: 0.0006
Mode 2
0, 0,
Natural Freg : 88.2716 [Hd] 88.4962 0.22% 0.0209 28%
Danying Factor: 0.0290
Mode 3
0,
Natural Freg : 88,4195 [H7] 88.5778 0.17% 0.002 83%
Danping Factor: 0.0118
Original Signal Indentified Signal
100 100
E 50 'E 50
£ £
5 g
E 0 E 0
[} (9]
ks 3
& &
A -50 a -50
-100 -100
0 1 2 3 0 1 2 3
t[s] t[s]
Original and Identified Spectra Differences of spectra
20 1
E 15+ 0.5
z -
£ 10 E 0
&
73
a s} -0.5
0 -1
0 5 10 15 20 25 0 5 10 15 20 25
f[Hz] f[Hz]

Figure 5- Impulse response and obtained by algorithm to a mechanical systems
tested in the laboratory.



Table 3. Experimental estimated modal parameters mean values and variance.

Identified Modal Parameters
Mode Frequency [HZ] Variance Damping Variance
1° 6.117 7.32 10° 0.00871 2.339 10°®
2° 12.484 8.944 10° 0.00893 1.02 107
3 17.92078 3.2 10 0.00535 1.6 10%

6. CONCLUSIONS

Good signal representation and modal parameters extraction are feasible by the
inclusion of the “Simulated Annealing” optimization technique in the “Matching
Pursuit” algorithm. The proposed method is insensitive to the objective function ill
conditioning which guarantees its robustness, being responsible to the reduction of the
computational effort.

The proposed metodology has better performance than that of Ruzzene et al (1996)
method, because the precision and robustness of the modal parameter identification of
the proposed method is independent of wavelet initial parameters. The Ruzzene’s method
requires the prior knowledge of the approximate natural frequencies values for a given
vibrating system.

In the case of high modal density systems with small modal damping ratios, the
obtained results are better than those calculated by the methods based on the FRF
estimation, which demand a high frequency resolution.
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